- Remove spike
- Options
- Change network
- I.e. use 2 layer LSTM instead of 1 layer LSTM
- Increase the batch size
- Remove outliers
- Change network
- number of steps (tensorflow)
- num_steps = (len(traindf) / args['batch_size']) / args['learning_rate']
- queue capacity (tensorflow)
- Queue_capacity = batch_size * 10
- Queue_capacity = batch_size * 10
- checkpoint (tensorflow)
- save_checkpoints_steps = max(100, params["train_steps"] // 10)
- save_checkpoints_steps = max(100, params["train_steps"] // 10)
- tf.data.Dataset (tensorflow)
num_parallel_X, prefetch
dataset.apply(
Tf.contrib.data.shuffle_and_repeat
Tf.contrib.data.map_and_batch
- Mirrored strategy (tensorflow)
distribution = tf.contrib.distribute.MirroredStrategy()
tf.estimator.RunConfig(train_distribute=distribution)
- Multi-label classification (tensorflow)
- Use the loss functions listed below for reducing computation
- tf.nn.sampled_softmax_loss, tf.nn.nce_loss
- Use the loss functions listed below for reducing computation
- Visualizing the convolutions and pooling (tensorflow)
Code
- Early stopping (tensorflow)
Code
Tuesday, July 23, 2019
Tip 4 AI
Subscribe to:
Posts (Atom)