Wednesday, July 29, 2015

Scikit-learn

  1. Scikit-learn’s algorithms
    1. Support Vector Machines 
      1. Classification
      2. Regression
      3. Outlier detection
    2. Logistic Regression 
    3. Naive Bayes 
    4. Random Forests 
    5. Gradient Boosting 
    6. K-means
  2. Scikit-learn Algorithm Cheat-sheet
  3. Classification
    1. Support Vector Classification
      1. sklearn.svm.SVC
      2. sklearn.svm.NuSVC
      3. sklearn.svm.LinearSVC
    2. Naive Bayes for Classification
      1. sklearn.naive_bayes.GaussianNB
      2. sklearn.naive_bayes.MultinomialNB
      3. sklearn.naive_bayes.BernoulliNB
    3. Nearest neighbors
  4. Regression
    1. Support Vector Regression
      1. sklearn.svm.SVR
      2. sklearn.svm.NuSVR
    2. Decision Trees
  5. Clustering
    1. sklearn.cluster.KMeans
    2. sklearn.cluster.AffinityPropagation
    3. sklearn.cluster.DBSCAN
    4. sklearn.cluster.Ward
    5. sklearn.cluster.MeanShift
    6. sklearn.cluster.SpectralClustering

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.